
www.manaraa.com

ORIGINAL RESEARCH

An enriched simulation environment for evaluation of closed-loop
anesthesia

Mengqi Fang • Yuan Tao • Youqing Wang

Received: 30 November 2012 / Accepted: 29 May 2013 / Published online: 8 June 2013

� Springer Science+Business Media New York 2013

Abstract To simulate and evaluate the administration of

anesthetic agents in the clinical setting, many pharmacol-

ogy models have been proposed and validated, which play

important roles for in silico testing of closed-loop control

methods. However, to the authors’ best knowledge, there is

no anesthesia simulator incorporating closed-loop feedback

control of anesthetic agent administration freely available

and accessible to the public. Consequently, many necessary

but time consuming procedures, such as selecting models

from the available literatures and establishing new simu-

lator algorithms, will be repeated by different researchers

who intend to explore a novel control algorithm for closed-

loop anesthesia. To address this issue, an enriched anes-

thesia simulator was devised in our laboratory and made

freely available to the anesthesia community. This simu-

lator was built by using MATLAB� (The MathWorks,

Natick, MA). The GUI technology embedded in MATLAB

was chosen as the tool to develop a human–machine

interface. This simulator includes four types of anesthetic

models, and all have been wildly used in closed-loop

anesthesia studies. For each type of model, 24 virtual

patients were created with significant diversity. In addition,

the platform also provides a model identification module

and a control method library. For the model identification

module, the least square method and particle swarm opti-

mization were presented. In the control method library, a

proportional-integral-derivative control and a model pre-

dictive control were provided. Both the model identifica-

tion module and the control method library are extensive

and readily accessible for users to add user-defined func-

tions. This simulator could be a benchmark-testing plat-

form for closed-loop control of anesthesia, which is of

great value and has significant development potential. For

convenience, this simulator is termed as Wang’s Simulator,

which can be downloaded from http://www.AutomMed.org.
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1 Introduction

With the rapid development of medical science, more and

more surgical procedures are being performed. In order to

ensure patient safety, quality of care, cost-containment and

a quiet, stress-free working environment, anesthetic tech-

niques are evolving. Traditional anesthetic administration

involves anesthetists dispensing volatile and intravenous

agents without feedback loops incorporated into their

apparatus to control anesthetic drug administration. In

other words, anesthetists regulate the amount of anesthetic

agent delivered to their patients according to their inter-

pretation of their patients’ physiologic status. Despite the

skill and experience of even the most astute clinicians, over

dosage and under dosage can occur. This can lead to major

potential postoperative complications such as cardiovas-

cular and neurologic events in the case of anesthetic

overdose and awareness during anesthesia with under

dosage. To deal with this issue and lessen the possibility of

error in drug dosages and administration, researchers have
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incorporated automatic control technology into devices for

clinical anesthetic administration, utilizing the concept of

closed-loop anesthesia. It has been demonstrated that

closed-loop control of anesthesia is feasible and as good as

or even better than human delivery relative to control of

drug concentrations and dosages [1, 2].

The depth of anesthesia during an operation can be

measured utilizing three indices, i.e. hypnosis, analgesia,

and neuromuscular blocking (NMB) degree. These indices

should be controlled simultaneously relative to their

respective proper levels during anesthetic administration.

The level of hypnosis can be assessed by analyzing the

electroencephalogram, such as median frequency, spectral

edge frequency, bispectral index, wavelet-based anesthetic

value for central nervous system, anesthesia entropy, and

so on [3–5]. Among those hypnosis monitoring indices,

BIS is the earliest one available for commercial application

approved by the US Food and Drug Administration and it

also appears to be one of the most promising indices to

monitor hypnosis level [6, 7]. The estimation of patients’

antinociception can be reflected by the electroencephalo-

gram as well as heart rate variability [3]. For NMB mon-

itoring, the patients’ reactions to nerve stimulation can be

used to evaluate the extent of block. However, several

issues relating to ongoing control of the extent of neuro-

muscular block by servo mechanisms, such as the deter-

mination of the set point have not yet been resolved.

Nonetheless, NMB is still the most evolved of closed-loop

control technologies relating to anesthetic agent adminis-

tration, due to the well developed monitoring devices and

less innate complexity of the feedback monitoring system.

To design closed-loop anesthesia, the physiological and

pharmacological parameters of patients should be well

understood and individualized models should be con-

structed. There are a number of available methods to build

pharmacokinetics-pharmacodynamics (PK-PD) models.

Among these methods, compartmental modeling method

[8, 9] is widely used due to its simplicity and effectiveness.

However, when modeling the pharmacokinetic and phar-

macodynamics patterns of various anesthetics, one must

take into account that they differ with respect to one

another as well as to various types of patients. Hence, when

modeling various virtual patients, the drugs used in this

simulator should first be decided upon and then the cor-

responding models should be selected, evaluated and

incorporated into the simulation algorithms in accordance

with the fixed drugs. Accordingly, four classes of anes-

thetic drugs were selected for use in the simulation sce-

narios. For hypnosis, the intravenous drug propofol and the

inhalational drug isoflurane were chosen because they are

widely utilized as components of general anesthesia. In

terms of analgesia and NMB, remifentanil, a rapidly acting

intravenous narcotic and atracurium, a widely used NMB

agent were chosen for their high appearance frequency in

the relevant references, a reflection of their popularity

among anesthetists.

Hypnotic intravenous agent model selection: Propofol is

one of the mainstream intravenous drugs, widely used for

induction of general anesthesia throughout the world. During

the past two decades, a large number of researchers have

concentrated on the exploration of PK-PD models of pro-

pofol. As a result, there are many propofol pharmacology

models describing the uptake and elimination of this drug in

patients during surgical anesthesia [10–16]. After evaluation

and comparison, it is concluded that the models developed by

Marsh et al. [16], Schnider et al. [10] and Schüttler et al. [12].

have been adopted by many researchers, due to their sim-

plicity and wide range of individuality. However, according

to the experimental result derived by Masui et al. [17], the

Schnider propofol model was finally incorporated into this

platform as it appeared to be more appropriate for use in

Target Controlled Infusion systems and advisory displays

systems than the other two models.

Hypnotic inhalational agent model selection: For mod-

eling the behavior of isoflurane on closed-loop anesthesia

delivery systems, the isoflurane models developed by Frei

et al. [18], Yasuda et al. [19] and Schnider et al. [20] were

chosen and incorporated into this platform.

Opioid agent model selection: For modeling opioid

behavior, several models for opioid are proposed by vari-

ous research groups [21–23]. Remifentanil, a typical opioid

drug, was selected for use in the simulator, and the corre-

sponding model presented by Minto et al. [24] was utilized.

Neuromuscular blocking (NMB) agent model selection:

Because NMB technology has been well developed and

administration of NMB degree is easier to control and

monitor in closed-loop systems than is the case for hypn-

otics and narcotic agents, there are few NMB models in

commercially used Target Controlled Infusion and advi-

sory display systems. The atracurium model proposed by

Weatherley et al. [25] was used in the simulator. In sum-

mary, these four selected models for hypnosis, analgesia

and NMB, enjoy wide acceptance in the anesthesia com-

munity, and are relatively simple and straightforward to

incorporate into simulations. The following sections dis-

cuss our use of these models in greater detail.

Up to now, various kinds of control strategies for closed-

loop administration of anesthetic agents have been developed

and validated. Some of these studies focused upon simulating

real-world anesthesia procedures utilizing sophisticated con-

trol algorithms. For example, Dumont et al. [26] have con-

ducted a robust hypnosis control system involving simulation;

two predictive control algorithms proposed by Niño et al. [27]

and Ionescu et al. [28] have been simulated on virtual patients

to test the performance of hypnosis control systems; a feed-

forward adaptive control system was raised by Nunes et al.
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[29] and realized in silico to regulate propofol dosing; and a

simulation comparison of four hypnosis closed-loop control

algorithms has been proposed by Yelneedi et al. [30]. Apart

from the simulation studies, some closed-loop anesthetic

algorithms have been developed and validated in clinical

studies by a large number of researchers. For example, the

proportional-differential and proportional-integral-derivative

(PID) control algorithms were used by Liu et al. [2, 31] to

design the delivery strategy for propofol; another kind of

robust system was raised by Mendonça et al. [32] for the

control of NMB level; a novel rule-based adaptive closed-loop

control system was raised by Hemmerling et al. [33] for pro-

pofol administration; and a model predictive control system

designed by Furutani et al. [34] and PID control systems

designed by Liu et al. [5, 35] were adopted to control a com-

bined hypnosis and analgesia system. From the perspective of

control theory, all of these applied closed-loop control meth-

ods can be roughly divided into three categories: (1) typical

traditional feedback control; (2) intelligent control and (3)

model-based advanced control. Accordingly, PID controller,

fuzzy logic controller, and model predictive control are fre-

quently used in closed-loop anesthesia [36]. Although the

studies based on intelligent control and model-based control

were widely employed over the past several decades, tradi-

tional controller technology, e.g. the PID controller, still

played a dominant role in the clinical setting.

When researchers want to test a new closed-loop control

algorithm in silico, they have to select a proper model of

virtual subject in advance. However, since there are so many

PK-PD models available, the researchers must spend con-

siderable time and effort consulting and assessing related

articles in order to find and select the models most appro-

priate for their needs. In order to save the researchers’ time,

we constructed a library of widely used virtual subject

models after investigating and collecting numbers of repor-

ted patient models. Finally, we combined the model database

and the control algorithm database into an anesthesia simu-

lation platform to imitate the practical anesthesia situation.

This newly proposed simulation platform which was built by

using MATLAB� (The MathWorks, Natick, MA) [37] is

mainly designed for researchers to test new closed-loop

control algorithms, and it also has the following advantages.

First, the platform can save the time of finding and simulating

appropriate virtual subject models for researchers, especially

for novices. Second, this platform has collected several

anesthesia models with a wide range of usage, so it can also

act as an information bank for anesthesia with great reference

value. Third, with this simulation platform, once researchers

come up with a novel control method, they can test this new

method’s stability and security before doing clinical trials. In

addition, different from clinical experiments, this platform

can provide a relatively fair and stable situation, which is

convenient for researchers to compare different advanced

control methods. Last but not least, this platform is extend-

ible, which means users can freely expand model and control

method libraries if needed.

Our simulation platform mainly involves two integrated

libraries, the virtual subject library and the control method

library. The former one aims to provide virtual patients and

the latter one is convenient for researchers to develop new

control algorithms for closed-loop anesthesia. The virtual

subject library consists of four published anesthetic models

[10, 11, 18–20, 24, 25], upon which 24 virtual patients

were generated with significant diversity. In the control

method library, four control modes and two closed-loop

control strategies were provided as benchmark programs.

In addition, this division also includes complete extendible

ports. In our simulator, some other functions, such as

model identification, noise simulation, and so on, are also

involved for researchers’ convenience.

The rest part of this paper is organized as follows. The

specific structures, functions, development process, and

expansion methods of this simulation platform are pre-

sented in Sect. 2. In Sect. 3, a simple PID control algorithm

is adopted to illustrate how to use this platform to develop

and test a new control algorithm. In Sect. 4, some conclu-

sions of this study are provided; in addition, some draw-

backs and some potential solutions of the present simulation

platform are discussed and suggested for the future study.

2 Establishment of the simulator

2.1 Platform specific structures

The overall structure of the anesthesia simulator that we

constructed is shown in Fig. 1. As can be seen from Fig. 1,

this platform consists of three fundamental modules: (1)

virtual patient division; (2) model identification division

and (3) control algorithm division. Each division has its

own specific functions and supports certain appropriate

expansions for the users’ convenience, and the combina-

tions of these divisions enable additional configurations for

users’ specialized research needs and applications. In the

following sections, the specific structures, rough functions,

brief methodology of developing and expanding the sim-

ulator are introduced for each division. Finally, the inter-

actions of the three components are summarized.

2.2 Model library development and virtual patient

generation

2.2.1 The model library

Considering the major purpose of establishing this simu-

lator, the virtual patient division can be treated as the

J Clin Monit Comput (2014) 28:13–26 15
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kernel of this platform. As mentioned in the introduction,

this platform includes four kinds of drug models, and the

detailed drug models are introduced in the subsequent

contents.

2.2.1.1 Propofol The propofol PK-PD model developed

by Schnider et al. [10, 11] can be treated as a combination

of two separated parts—the PK and PD parts. The PK part

has a three-compartmental structure which can be modeled

by third-order linear differential equations based on the

mass balance theory, while the PD part is modeled by a

first-order differential equation and Hill equation which

can be treated as a static nonlinear term. Hence, the total

Schnider propofol model can be treated as a wiener system,

and its integral formulation is presented as follows.

The PK model can be described as the following linear

differential equations.

dC1ðtÞ
dt

¼ � k10 þ k12 þ k13ð ÞC1ðtÞ þ k21

V2

V1

C2ðtÞ

þ k31

V3

V1

C3ðtÞ þ
1

V1

uðtÞ

dC2ðtÞ
dt

¼ k12

V1

V2

C1ðtÞ � k21C2ðtÞ

dC3ðtÞ
dt

¼ k13

V1

V3

C1ðtÞ � k31C3ðtÞ

ð1Þ

where C1, C2 and C3 denote the concentration of drug in

the central compartment and the other two peripheral

compartments, respectively. The constants Vi (i = 1, 2, 3)

denote the volume of the ith compartment, and the con-

stants kij (i, j = 1, 2, 3, i = j) represent the drug amount

transfer rate from the ith compartment to the jth compart-

ment. The constant k10 represents the drug metabolism rate,

and u (t) is the infusion rate of propofol. In the Schnider

propofol model, some personalized parameters are shown

in Table 1 [28].

In Table 1, lean body mass (lbm) is related with the

patient’s gender. Parameters Cl1, Cl2, and Cl3 denote the

clearance rates of the corresponding compartments, and the

transfer and metabolism rates should be calculated

according to the clearance rates as denoted in Eq. (2).

k10 ¼
Cl1

V1

; k12 ¼
Cl2

V1

; k13 ¼
Cl3

V1

; k21 ¼
Cl2

V2

; k31 ¼
Cl3

V3

ð2Þ

From the above formulas, a conclusion that the age (in

year), weight (in kilogram), height (in centimeter) and

gender of a patient decide the PK model can be derived.

The PD model, a first-order differential term and a

nonlinear Hill equation, which aims to combine the drug

concentration with the drug effect, is presented in Eq. (3).

User interface

Main program

Virtual patients

Hypnosis

Propofol
Schnider

Isoflurane
Frei

Yasuda
Schnider

Analgesia

Remifentanil
Minto

Neuromuscular 
blockade

Atracurim
Weatherley

Selected one from three indices and 
corresponding drug model

Identification 
methods

Least 
square PSO

Selected 
identification 

method

Control modes

Automatic

IMC-
PID

MPC

Selected 
advanced control 

method

Manual

Selected control algorithm

...

...

Fig. 1 The integral structure of anesthesia simulator. The models

proposed by Schnider et al. [10, 11, 20], Frei et al. [18], Yasuda et al.

[19], Minto et al. [24], and Weatherley et al. [25] have been listed in

this figure and abbreviations PSO, IMC-PID and MPC denote Particle

Swarm Optimization, Internal Model Control-Proportion Integration

Differentiation, and Model Predictive Control, respectively. The

dashed line was used for the arrow from ‘‘selected one from three

indices and corresponding drug model’’ to ‘‘selected control algo-

rithm’’, because this arrow exists only when the closed-loop control

method is used. The dashed lines were also used for the arrows around

‘‘selected identification method’’, because the model identification

block is flexible and could be chosen to activate or not according to

the users’ needs

16 J Clin Monit Comput (2014) 28:13–26
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dCeðtÞ
dt
¼ ke0ðC1ðtÞ � CeðtÞÞ

BISðtÞ ¼ E0 � Emax

Cc
eðtÞ

C
c
eðtÞ þ EC

c
50

ð3Þ

where Ce denotes the drug concentration of the effect

compartment, an imaginary compartment. The constant ke0

reflects the transfer ratio between the central compartment

and the effect compartment. E0 and Emax denote the

baseline and maximum effect value of BIS, respectively,

and are typically assigned a value of 100. EC50 is the drug

concentration at half maximal effect and c determines the

steepness of the curve in Hill equation.

In the Schnider propofol PK-PD model, the parameters

age, weight, height, EC50, c, and the patient’s gender can

reflect the patient’s individuality and are also the cues of

creating virtual patients.

2.2.1.2 Isoflurane The isoflurane model can be divided

into three parts—the simplified respiratory system model

proposed by Frei et al. [18], the five-compartmental PK

model proposed by Yasuda et al. [19] and the PD model

proposed by Schnider et al. [20]. During the simulation

process, the reference of Gentilini et al. [38] was referred to

detail this model. Because isoflurane is a volatile inhaled

anesthetic agent, the patient’s respiratory system model

should be incorporated into the model. For the sake of

modeling convenience, the originally complex respiratory

system model is reduced to a first-order function which has

relative accuracy and is described as following [18].

V
dCinsp

dt
¼ Q0C0 � ðQ0 � DQÞCinsp

� fRðVT � DÞðCinsp � C1Þ
ð4Þ

where V is the volume of the respiratory system; C1

denotes the alveolar concentration; fR is the respiratory

frequency; VT represents the tidal volume; D is the phys-

iological dead space; DQ denotes the losses of the

breathing circuit through the pressure-relief valves; Q0 and

C0 are the fresh gas flow and its anesthetic concentration

entering the respiratory circuit, respectively. The unit of V,

VT, and D is liter; the unit of C0, C1, and Cinsp is percent;

the unit of Q0 and DQ is liter per minute. Among these

variables, C0 is the manipulated variable which is also the

input variable of this model, and Cinsp is the output

variable.

The five-compartmental PK model of isoflurane, which

can be treated as fifth-order differential equations, is rep-

resented in Eq. (5).

dC1

dt
¼
X5

j¼2

kj1Cj

Vj

V1

� k1jC1

� �
þ fRðVT � DÞ

V1

ðCinsp � C1Þ

dC2

dt
¼ k12C1

V1

V2

� k21C2 � k20C2

dCj

dt
¼ k1jC1

V1

Vj

� kj1Cj ðj ¼ 3; 4; 5Þ

ð5Þ

where the constants Vi (i = 1, …, 5) denote the volume of

the ith compartment, and the constants Ci (i = 2, …, 5)

denote the drug’s concentration in the ith compartment.

Similar to the abovementioned propofol three-compart-

mental model, the constants kij (i, j = 1, …, 5, i = j)

represent the transfer rate of isoflurane from the ith com-

partment to the jth compartment. The constant k20 repre-

sents the drug metabolism rate. In the isoflurane PK model,

the parameters Vi (i = 1, …, 5), kij (i, j = 1, …, 5, i = j)

and k20 vary with various patients.

The structure of isoflurane PD model is the same as

Eq. (3) and the main differences are the numerical values

of constants ke0, EC50 and c. Hence, in the whole isoflurane

model, the parameters Vi (i = 1, …, 5), kij (i, j = 1, …, 5,

i = j), k20, ke0, EC50 and c can be changed to create

various virtual patients.

2.2.1.3 Remifentanil The remifentanil PK-PD model

developed by Minto et al. [24] is the combination of a

three-compartmental PK model and a PD model con-

structed by a first-order function plus a static nonlinear

term called Hill equation. So the structure of the referred

remifentanil model is similar to the Schnider propofol

model, and the main differences appear in the calcula-

tions of parameters and the controlled index. The rem-

ifentanil PK model has a structure described in Eq. (1),

and the relevant parameters are represented in Table 2

[38].

In Table 2, lbm also represents the lean body mass, and

the transfer rates k10, k12, k13, k21, k31 can also be calcu-

lated according to Eq. (2). Therefore, the remifentanil PK

Table 1 The PK parameters of the Schnider propofol model, where

‘‘lbm’’ represents the lean body mass

PK parameters Values or computational formulas

V1 [1] 4.27

V2 [1] 18:9� 0:391 age� 53ð Þ
V3 [1] 238

Cl1 [1/min] 1:89þ 0:0456 weight� 77ð Þ
�0:0681 lbm� 59ð Þ þ 0:0264 height� 177ð Þ

Cl2 [1/min] 1:29� 0:024 age� 53ð Þ
Cl3 [1/min] 0.836

lbm (for male) 1:1weight� 128 weight2

height
2

lbm (for female) 1:07weight� 148 weight2

height
2

J Clin Monit Comput (2014) 28:13–26 17
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model can be determined after the determination of

patient’s age, height, weight and gender. And then the

remifentanil PD model is represented as below.

dCeðtÞ
dt
¼ ke0ðC1ðtÞ � CeðtÞÞ

SEFðtÞ ¼ SEF0 þ SEFMAX � SEF0ð Þ Cc
eðtÞ

C
c
eðtÞ þ EC

c
50

ð6Þ

where ke0 and EC50 under the half maximal effect condi-

tion are related to the patient’s age, the baseline value

SEF0 = 20, and the maximal effect value SEFMAX = 5.5.

Finally, in the complete remifentanil model, the parameters

age, weight, height, and even gender can be the personal-

ized parameters which can be changed properly to generate

different virtual individuals.

2.2.1.4 Atracurium The atracurium PK-PD model

developed by Weatherley et al. [25] can be treated as a

two-compartmental PK model and a PD model including a

second-order function and nonlinear Hill equation in series.

In order to confirm and detail this model, another Ref. [39]

is referred. The atracurium PK model is shown in the fol-

lowing equations.

dx1ðtÞ
dt
¼ �k1x1ðtÞ þ a1uðtÞ

dx2ðtÞ
dt
¼ �k2x2ðtÞ þ a2uðtÞ

CpðtÞ ¼ x1ðtÞ þ x2ðtÞ

ð7Þ

where xi (i = 1, 2) denotes the state variables and a1, a2 (in

kilograms per mililiter), k1, k2 (in per minute) are the

patient-dependent parameters. The drug infusion rate u

(t) (in micrograms per kilogram per minute) is the input of

this PK model, and the plasma concentration Cp (t) (in

micrograms per milliliter) is the output of this PK model.

The atracurium PD model is described as a cascade of a

second-order function and a nonlinear term, and it is for-

mulated as following.

dCðtÞ
dt
¼ �kCðtÞ þ kCpðtÞ

dCeðtÞ
dt
¼ � 1

s
CeðtÞ þ

1

s
CðtÞ

rðtÞ ¼ 100EC
c
50

EC
c
50 þ C

c
eðtÞ

ð8Þ

where Ce (t) is the drug concentration of the effect com-

partment, C (t) is an intermediate variable, and r (t) (in

percent) is the reflection of NMB level. And c (in per

minute), s (in minutes), EC50 (in micrograms per milliliter)

and c (dimensionless) are patient-independent parameters.

Finally, in the whole atracurium PK-PD model, the

parameters ai (i = 1, 2), ki = 1, 2, k, s, EC50, k are the

patient-dependent parameters and also the cues to generate

virtual patients.

Once the individual parameters are selected, the

abovementioned four drug models can be used to reflect the

designate patient’s overall anesthesia situation. Users could

choose to control one from three indices by selecting the

proper model, and all the models are all single input single

output models.

2.2.2 The development and expansion of model library

2.2.2.1 Model library development By examining the

four drug models described in Sect. 2.2.1, it can be inferred

that all of the models could be treated as a cascade of a

linear system denoted by differential equations and a

nonlinear system denoted by the Hill equation. Accord-

ingly, the core of model realization in the platform is to

solve the underlying differential equations, and all the

related programs serve this single aim.

In this platform, the Runge–Kutta iteration algorithm was

used to solve the differential equations numerically by using

the command ‘‘ode45’’ in MATLAB. Before solving equa-

tions, the model parameters should be given, and the time

span used during solution process should be settled accord-

ing to sampling time for convenience of simulating discrete

control in practice. After solving the differential equations,

the numerical value of the effect compartment concentration

Ce would be extracted to calculate the corresponding anes-

thesia index according to the PD model. In conclusion, the

procedures of model library development consist of the

following steps: (1) setting relevant model parameters; (2)

solving the differential equations and (3) calculating the final

anesthesia index. The steps are then packaged into an m-file

called ‘‘VIRTUAL_SUBJECT.m’’ in this platform.

The ‘‘VIRTUAL_SUBJECT.m’’ file can be regarded as

a virtual patient under anesthesia, and it can also be treated

as a black-box model whose inputs are the drug infusion

Table 2 The PK parameters of the Minto remifentanil model

PK parameters Computational formulas and values

V1 [1] 5:1� 0:0201 ðage� 40Þ þ 0:072 ðlbm� 55Þ
V2 [1] 9:82� 0:0811 ðage� 40Þ þ 0:108 ðlbm� 55Þ
V3 [1] 5.42

Cl1 [1/min] 2:6� 0:0162 ðage� 40Þ þ 0:0191 ðlbm� 55Þ
Cl2 [1/min] 2:05� 0:0301 ðage� 40Þ
Cl3 [1/min] 0:076� 0:00113 age� 40ð Þ

18 J Clin Monit Comput (2014) 28:13–26
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rate and the parameters, and outputs are effect compart-

ment concentration and anesthesia index, i.e. hypnosis,

analgesia, and NMB index. By accessing the abundant

ports provided, users can choose and manipulate controlled

variables freely, add confounding factors to simulate actual

clinical situations encountered in the operating room and

also extract intermediate but useful variables according to

their needs.

2.2.2.2 Model library expansion The main function of

the model library division is to provide an object and

generate some meaningful data for users to test the per-

formance of control or identification algorithms, diagnose

the potential faults and even train the novice, e.g. anes-

thesia residents, etc. In addition, another advantageous

feature of this division is its relatively simple extensible

function. To enrich the model library, users could choose to

add other models, and the following steps are provided as a

reference.

Step 1: Add the requisite parameters of the added model,

while taking care not to confuse them with the original

data in the platform.

Step 2: Program to realize more models, and the existing

models in the platform may be referred to or utilized as a

sample or template.

Step 3: Add the symbol name of the additional model

into the platform for convenience of choice.

While modifying parameters or adding models, it is

important to pay close attention to the program’s integrity

and the uniqueness of program arguments to avoid confu-

sion or programming errors.

2.2.3 Virtual patients generation

To establish a diversified simulation environment, this simu-

lation platform provides 24 virtual patients (12 males and 12

females). First, one nominal male patient (M_adult#nominal)

and one nominal female patient (F_adult#nominal) were

created by using parameters from some related references [3,

10, 18, 19, 24, 28, 38, 39]. Taking the two nominal patients as

the mean values, 20 of the remaining 22 patients

(F_adult#001–M_adult#020) are generated using lognormal

distribution method. Finally, the last two patients

(M_adult#average, F_adult#average) are generated by cal-

culating arithmetic mean parameter values of the other male

and female virtual patients, respectively. Obviously, the two

nominal patients reflect the average levels of all patients.

Users can select the appropriate model type and then choose

one or more virtual patients as needed.

In the process of creating and programming the virtual

patients, the most basic task is to select and set the model

parameters in order to solve the equations. Once this is

done, however, it is relatively simple to add additional

virtual patients with differing physiologic profiles merely

by choosing proper parameters and adding them into the

platform. The detailed methodology and parameters are

shown as following.

2.2.3.1 Lognormal distribution method The lognormal

distribution method is a kind of algorithm to generate ran-

dom numbers around certain mean value based on normal

distribution approach. With the lognormal distribution

method, if a series of random numbers denoted by x with

mean value x0 will be generated, the logarithm of x
x0

which

follows normal distribution should be generated first, and

then the value of x can be derived. Specially, the logarithm of
x
x0

obeys normal distribution with zero mean and standard

deviation r. So the range of x can be changed by adjusting

the r value properly. The lognormal distribution method has

the advantage that the generated random number x is still

positive, which normal distribution approach cannot satisfy.

2.2.3.2 Virtual patients Considering the drug models

described in Sect. 2.2.1, the personalized parameters are:

(1) the patient’s age, weight, height; (2) the compartmental

volumes and transfer rates of the isoflurane PK-PD model;

(3) the parameters ai, ki (i = 1, 2), s, k of atracurium PK-

PD model and (4) EC50, c of propofol, isoflurane and at-

racurium PD model. As the patient’s gender merely decides

the calculation of lbm rather than other parameters, the

individual parameters of male and female nominal patients

can be combined to illustrate in one table. After taking the

nominal parameters as mean values and selecting suitable

r values, the personalized parameter ranges of other 20

patients can be settled. In summary, the personalized

parameter values and ranges of the virtual patients are

illustrated in the following Table 3.

2.3 Patient model identification division

2.3.1 Identification division introduction

Based on the virtual patient library, a patient model iden-

tification division is developed in this simulation platform.

This division is an independent module, which can be used

to identify the selected patient’s model with various tra-

ditional or novel identification algorithms. On one hand,

this division seems necessary because the patient’s model

usually cannot be achieved ahead of time during a surgical

procedure. In this situation, model identification online or

during anesthesia induction is essential, especially under

the model-based closed-loop control condition, and a

model identification division is set up in this platform in

order to simulate this scenario. In addition, this model
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identification division can also be used to test the perfor-

mances of certain novel system identification algorithms.

All the drug models in Sect. 2.2.1 can be considered as a

type of system with linear differential terms and a static

nonlinear term, which could be treated as a Weiner system.

Hence, the model identification division could be used to

test the performances of system identification algorithms

aiming at a kind of special wiener system, and any other

systems as an extension. On the other hand, if model

identification is not necessary in the user’s algorithm, this

model identification division can be neglected directly by

merely excluding the identified results out of the pro-

grammed algorithm.

2.3.2 Identification division development

In the circumstance of simulation, the existing model

identification division is an independent function block

with the identification algorithms programmed to deal with

the input and output data generated from selected virtual

patients. Considering the practical operation situation, the

simulated drug infusion strategies provided in this platform

are in two forms—constant infusion (i.e. step excitation

signal) and bolus infusion (i.e. impulse excitation signal).

There are also two model identification methods, least

square method [40] and particle swarm optimization

method [41, 42], in this platform. The least square method

is a traditional system identification method which is based

on the strict formula derivation. As a comparison, the

particle swarm optimization method can be treated as a

kind of intelligent search algorithm, and it may have a

wider solution space than the traditional method dealing

with certain special systems. The developing flow of model

identification division is shown as following. First of all,

the identification time, the virtual patients under identifi-

cation, the form of input and the identification method

Table 3 The personalized parameters of virtual patients in this platform

Personalized parameter Nominal patient F_adult#001–M_adult#020 M_adult#average F_adult#average

Age 40 30–53 41 39

Weight 65 50.44–83.76 66.0870 64.4187

Height 165 153.99–176.8 164.2675 166.4503

Propofol EC50 7.5 4.106–13.698 7.8381 7.5418

c 3 1.65–5.45 3.1324 3.0223

Isoflurane V1 2.31 1.2018–4.44 2.4626 2.2377

V2 7.1 3.4527–4.6 7.4222 7.3193

V3 11.3 4.5441–28.1 12.6908 11.3889

V4 3 1.7647–5.1 2.9781 2.8675

V5 5.1 1.4948–17.4 6.3068 5.3432

k12 1.26 0.8481–1.872 1.2464 1.3804

k13 0.402 0.285–0.567 0.4108 0.3931

k14 0.243 0.1286–0.459 0.2324 0.274

k15 0.0646 0.0221–0.1888 0.0793 0.0737

k20 0.0093 0.0017–0.0504 0.0143 0.0097

k21 0.21 0.0967–0.456 0.1913 0.2557

k31 0.023 0.0076–0.0698 0.0274 0.0218

k41 0.003 0.0011–0.0081 0.003 0.0036

k51 0.0005 0.0002917–0.00857 0.00050066 0.00045504

ke0 0.3853 0.02477–5 0.8632 1.7508

EC50 0.7478 0.4959–1.094 0.8032 0.6673

c 1.534 0.7915–5 2.1795 1.4021

Atracurium a1 0.0305 0.016–0.0581 0.0317 0.0304

a2 0.0057 0.0039–0.0083 0.0055 0.006

k1 0.395 0.24–0.65 0.406 0.4079

k2 0.0375 0.0287–0.049 0.0374 0.0382

k 0.1055 0.0856–0.13 0.1044 0.1095

s 7.21 3.7134–13.999 7.9183 6.5723

EC50 0.655 0.5959–0.72 0.6534 0.6641

c 4.5 3.2661–6.2 4.4692 4.2350
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should be settled. Then the anesthesia scenario would be

started by calling the function ‘‘VIRTUAL_SUBJECT.m’’

to generate the reaction data. At last, the collected reaction

data would be processed to derive the model parameters of

the selected virtual patients. All these procedures were

packaged into an m-file called ‘‘model_identification.m’’

for the convenience of users to change or expand this

division.

The two model identification algorithms embedded in

this platform are represented as sample examples. In the

two identification methods, the patient’s model is formu-

lated as a second-order difference equation denoted as

Eq. (9).

a2yðk � 2Þ þ a1yðk � 1Þ þ a0yðkÞ ¼ b1uðk � 1Þ ð9Þ

where constants a0, a1, a2, b1 are the unknown model

parameters. After introducing the backward lag operator q,

the Eq. (9) can be rewritten in a transfer function form as

Eq. (10). Finally, the numerator and denominator in Eq.

(10) would be presented in the user interface as the model

identification result, and the calculated parameters could be

exported into the workspace for the usage of the model-

based control algorithms if needed.

YðkÞ
UðkÞ ¼

b1q�1

a0 þ a1q�1 þ a2q�2
ð10Þ

2.3.3 Identification division expansion

From the above-mentioned introduction of this division,

one conclusion that can be derived is that the current model

identification is a type of open-loop and offline method. To

expand this division, there are some alternative ways as

follows.

1. On-line identification expansion: since this division is

actually independent of the other components except

virtual patient division in this platform, it could be

embedded into the other programs reflecting the

anesthesia process to act as a data processing program

segment. The data collecting method should be

adjusted accordingly, and the identification time period

should also be considered.

2. Closed-loop identification expansion: the main differ-

ence between open and closed loop identification is

that the data used in identification process is collected

under open-loop or closed-loop condition. Accord-

ingly, if this kind of expansion is adopted, users can

easily change the model input from the fixed constant

or bolus input to the automatic input (i.e. the control-

ler’s output). It is more important that the model

identification method should be also changed to meet

closed-loop identification need.

2.4 Control operation division

2.4.1 Control division introduction

This simulation platform provides four control modes:

manual, automatic, manual ? automatic (switching from

manual mode to automatic mode), and automatic ? manual

(switching from automatic mode to manual mode). Each of

the four modes has its own simulation significance and

usages, such as control performance test and comparison,

fault creation and detection, and even simulation training

for novice anesthesia residents, etc. Although there are only

four types of control modes given in this platform as sam-

pling programs, the abundant connectors allow users to

expand the existing control modes to the extent they need,

thereby improving the flexibility of the simulation platform.

The four modes could also be condensed into two kinds

of operations—manual and automatic operation. For

manual operation, users will need to set the infusion mode

(constant, bolus or both), the infusion rate or amount and

the drug delivery time point in advance. For automatic

operation, users will need to employ the separated control

algorithm program to determine the drug infusion strategy

automatically. As templates and contrasts, two kinds of

control algorithms, which are widely used in anesthesia

field, were provided in this platform. One is the internal

model control based PID method [43] and the other is

model predictive control method [44]. Finally, this plat-

form automatically integrates the selected control algo-

rithm with the controlled patient and prints out the

diagrams of control effect. In addition, certain faults such

as actuator and sensor faults can be incorporated in this

division, and some kinds of technologies such as an

extended state observer [45] could be developed to help

detect and deal with the sensor artifact.

Apart from the above, an alternative scenario loading

mode is provided in this platform. In this mode, users can

load the scenario files within this platform to have a test

run, and they can also compile scenario files themselves to

describe specific scenes usually used in future studies. It is

worth noting that the scenario loading part and the afore-

mentioned manual/automatic control part are parallel and

cannot be used simultaneously.

2.4.2 Control division development

This section is relatively important for the general closed-

loop anesthesia researchers because the novelty developed

control algorithms should be realized in this division. This

control operation division packaged as an m-file called

‘‘control_run.m’’ is essentially a data collection and pro-

cessing program, and it is also realized based on the virtual
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patient division. For the realization of manual operation,

the virtual patient division (i.e. ‘‘VIRTUAL_SUB-

JECT.m’’) is called after the settling of drug infusion

strategy, which is simple to process. While for the reali-

zation of automatic operation, other separated functions

should be programmed to act as closed-loop control algo-

rithms, such as the m-files ‘‘controlimc.m’’ and ‘‘control-

mpc.m’’ incorporated in this platform. These closed-loop

control programs can be treated as packages that collect

and conduct the previous data needed in the algorithms and

generate the drug infusion amount in real time. Moreover,

the combination of the manual and automatic control

algorithms should be based on a switching time provided

by the users.

In conclusion, the developing flow of this control

operation division can be summarized as following. First,

the selected control mode, the selected virtual patient, the

running and switching time, and the relevant parameters

needed in the control algorithms should be settled in

advance. Then the virtual patient division would be called

iteratively to simulate the patient in anesthesia process and

the chosen drug infusion strategy would be invoked to

regulate the controlled patient. Finally, the program would

keep the useful process data in mind automatically and plot

the corresponding control effect figures.

2.4.3 Control division expansion

This division also provides certain expandable functions

for users. As alternative options, there are some extension

methods shown in the following content.

1. Novel control algorithm expansion: once researchers

develop a new control algorithm and want to have a

test, the developed control algorithm should be

programmed and embedded into this platform. In this

platform, as closed-loop control algorithms such as

internal model control based PID and model predictive

control are separated from the main program, the

programming process of the added algorithm seems

relatively easy to handle. Users could extract the data

necessary to the control algorithm from the virtual

patient division via the function ports by imitating the

existing sample programs, and then program to deal

with the collected data and give out the drug infusion

strategy.

2. Control mode expansion: Although there are only four

kinds of control modes provided in this platform, users

could expand the existing control modes according to

their needs. For example, the expansion mode ‘‘man-

ual ? automatic ? manual’’ could be realized by

inserting another switching time point into the main

program.

This division is relatively principal and flexible, so the

available expansion methods are not merely limited to the

above two types. In fact, the core of the model identifica-

tion and the control operation division deals with the vir-

tual patient with various methods. Therefore, all the other

reasonable divisions could also be compatibly incorporated

into this platform.

2.5 Platform construction

In the above sections, the functions, usages, developments

and expansions of the three primary components in this

platform have been detailed separately. In summary, the

cores of the three components could be condensed as fol-

lows: The virtual patient division is essentially a black box

model simulating the virtual patient under anesthesia,

aiming to provide certain process data in order to test some

control and identification algorithms, etc. The model

identification division is actually a data collecting and

processing program segment aiming at testing several

model identification algorithms, providing identified mod-

els for some model-based control algorithms or fault

detection methods. And the control operation division is

relatively flexible and mainly developed for the researchers

to develop and compare several novel control algorithms.

The interactions of the three components are shown in

Fig. 2.

From Fig. 2, one will see that the virtual patient division

could be treated as the foundation of this platform, whereas

the other two divisions, which could run separately, are

developed to operate on the virtual patients. Such con-

struction, by minimizing the correlations of various com-

ponents, makes it convenient for users to change, compose,

expand and transplant the programs in a flexible platform.

Virtual patient division

Model identification 
division

Control operation 
division

Fig. 2 The interactions of the three primary components in the

platform at the view of program development. The dashed lines

represent that the corresponding interactions would occur only under

certain conditions. The virtual patient division provides simulated

data to the model identification division. The control operation

division provides drug infusion strategy to the virtual patient division,

and the virtual patient division would act on the control operation

division in return under closed-loop control condition. When the

model-based control algorithm is adopted and the patient’s model is

not obtained ahead of time, the interaction between model identifi-

cation division and control operation division would exist. Otherwise,

the model identification division and the control operation division

would run without interfering with each other
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For users, there are several potential but unexplored

functions of this platform, and the functions will be

explained in the following section.

2.6 Platform potential functions

Apart from the functions existing in this platform, several

potential functions could also be achieved by changing or

expanding the available programs in this platform. These

potential functions are listed as follows.

1. The establishment of synergy model. The available

models in the model library are all single input single

output models, so the addition of the synergy models

could expand the virtual patients from a kind of

univariate system to multivariate system.

2. Observer addition and performance evaluation. This

platform has already incorporated a kind of extended

state observer. Take it as a sample program and other

kinds of observers could also be installed into this

platform to be used and the observation performances

could be compared.

3. Fault creation and detection. Some faults such as

artifacts could be simulated and several methods raised

to detect and isolate the faults could be realized and

compared.

4. Operation stimulus simulation. The stimulus could be

treated as a form of disturbance occurring during

closed-loop anesthesia that can be realized on the

virtual patients.

5. Creation of tutorial software for guiding new anesthe-

sia residents. For this usage, the model library should

be further completed.

3 Platform operation example

In Sect. 2, various functions of this simulator have been

exhibited and explained. However, for the closed-loop

anesthesia researchers, the question of how to develop a

novel control algorithm is the most significant. Thus, a

brief demonstration will be given in this section about the

development and test of a simple control algorithm—PID

method. To facilitate the narrative, the following situation

will be taken as an example: using BIS as the feedback

variable to regulate propofol infusion via manual and PID

method.

3.1 PID algorithm development

Throughout the whole control theory, PID control method

can be treated as a fundamental, traditional and widely

used algorithm. The thought of PID could be concluded as

adjusting the controller’s output with the deviation of the

given set point and the actual system output, and it can be

easily formulized as the following equation.

uðtÞ ¼ KpeðtÞ þ Ki

Z
eðtÞdt þ Kd

deðtÞ
dt

ð11Þ

where Kp, Ki and Kd are the three parameters of the PID

controller, and e (t) denotes the derivation of set point and

system output.

After discretization, Eq. (11) can be rewritten in an

incremental form as Eq. (12).

DuðkÞ ¼ KpðeðkÞ � eðk � 1ÞÞ þ KieðkÞTS

þ Kd

eðkÞ � 2eðk � 1Þ þ eðk � 2Þ
Ts

ð12Þ

where Ts is the sampling time, and the meanings of Kp, Ki,

Kd and e are the same as those in Eq. (11).

Obviously, the construction of the PID controller is

based on the collecting and processing of the deviation

data. So the virtual controller program should incorporate

the previous input data, output data and set point value as

the function input variables, and the controller’s output as

the function output variable. After that construction, the

PID controller program should be embedded into this

platform parallel to the other two controllers, and the

symbol convenient for choice such as ‘‘pid’’ should also be

added to denote this algorithm. Finally, the PID control

algorithm option should be added into the user interface in

order to active this algorithm.

3.2 PID algorithm test process

The overall structure of this anesthesia simulator has been

shown in Fig. 1, and its corresponding user interface which

reflects the platform structure intuitively could be found in

Fig. 3. As can be seen from Fig. 3, this platform has four

parts: (1) ‘‘simulation background options’’ division; (2)

‘‘patient model identification’’ division; (3) ‘‘control

parameters setting’’ division, and (4) ‘‘virtual patient

options and platform launch’’ division. However, the test of

PID algorithm performance only requires three of the

aforementioned four divisions, as the PID control method

is a model-free algorithm and no need of model identifi-

cation. Based on the user interface, the following test

procedures are given to illustrate the usage of PID virtual

controller.

Step 1: Determine the simulation background. In this step,

users should set the ‘‘Control mode’’ option as ‘‘man-

ual ? automatic’’, set the ‘‘Anesthesia indices’’ option as

‘‘hypnosis’’ and set the ‘‘Drugs’’ option as ‘‘propofol’’.

Step 2: Select the controlled virtual subjects. As an

example, two virtual patients, F_adult#003 and
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M_adult#014, were chosen. The selected drug model is

the three-compartmental PK-PD model for propofol

proposed by Schnider et al. [10, 11].

Step 3: Configure the control parameters setting division.

In this step, ‘‘setting the parameters manually’’ was used

as an example instead of loading the existing scenario

files. First, some simulation information, such as sam-

pling time length, run time length, set point value, and

automatic and manual control time lengths, should be

set. Second, the check boxes of manual drug infusion

algorithm should be selected according to actual

requirement. Here, the constant infusion control algo-

rithm was selected. For this strategy, the numerical value

of drug size was set as 0.1 at the beginning and was

changed to 0.25 from the 5th min. Next, PID algorithm

was selected, and the corresponding parameters were set

as Kp = -5.3, Ki = -3, Kd = -0.006. After these

procedures, the control configuration has been com-

pleted (See Fig. 4).

Step 4: Launch the platform by pressing the ‘‘Run’’

button. This is the last step of normal operation and the

final control results can be found in Fig. 5. The

Fig. 3 The user interface of the

anesthesia simulator

Fig. 4 Control parameters

setting configuration
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simulation data can be treated as real data in practical

operation and users could obtain the measurement data

by pressing the ‘‘Add noises’’ button and completing the

configuration according to the actual situation.

4 Conclusions

In this paper, we describe a new enriched anesthesia sim-

ulator which we have constructed and introduced. It com-

bines four kinds of widely used anesthesia models into a

model library and provides some other additional functions

such as model identification, manual/automatic control

algorithm trial, noise simulation, etc. This anesthesia sim-

ulation platform can save time and simplify development

projects for researchers who devote themselves to investi-

gating novel closed-loop anesthesia control algorithms and

it can also provide reference value to a certain degree as a

small model library. It also shows promise as an educa-

tional tool for anesthesia residents by simulating clinical

conditions apt to be encountered in the operating room

when administering anesthetic drugs.

However, there are some limitations of this platform that

are listed as follows.

1. Due to the incorporated models in this platform, the

simulator only supports control algorithm develop-

ments of univariate systems at present.

2. Under current conditions, this simulator does not

include the modeling of relevant stimuli during

operation.

3. This simulator is merely a benchmark tool for testing

certain control algorithms in vitro before actual

clinical experiments, and the practical performances

of the controllers still need to be verified via clinical

experiments.

In the future, further studies should be done on the basis

of this existing platform. First, the model library can be

enriched with the development of anesthesia models.

Second, to describe practical clinical scenarios more dis-

tinctly, a surgery stimulation scenario should be added to

this simulation platform. In addition, some other evaluation

tools and indices might be included in this simulation

platform. Finally, this platform should be refined to reflect

actual real-world clinical situations more accurately. These

issues will be considered in future studies.
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